KH

K.A. Hildebrandt

36 records found

Ensembles of contours arise in various applications like simulation, computer-Aided design, and semantic segmentation. Uncovering ensemble patterns and analyzing individual members is a challenging task that suffers from clutter. Ensemble statistical summarization can alleviate t ...
The contour depth methodology enables non-parametric summarization of contour ensembles by extracting their representatives, confidence bands, and outliers for visualization (via contour boxplots) and robust downstream procedures. We address two shortcomings of these methods. Fir ...
Background and purpose: Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated ...
The need to understand the structure of hierarchical or high-dimensional data is present in a variety of fields. Hyperbolic spaces have proven to be an important tool for embedding computations and analysis tasks as their non-linear nature lends itself well to tree or graph data. ...
Artificial Intelligence (AI)-based auto-delineation technologies rapidly delineate multiple structures of interest like organs-at-risk and tumors in 3D medical images, reducing personnel load and facilitating time-critical therapies. Despite its accuracy, the AI may produce flawe ...
We introduce a geometric multigrid method for solving linear systems arising from variational problems on surfaces in geometry processing, Gravo MG. Our scheme uses point clouds as a reduced representation of the levels of the multigrid hierarchy to achieve a fast hierarchy const ...
Post-translational modifications (PTMs) affecting a protein's residues (amino acids) can disturb its function, leading to illness. Whether or not a PTM is pathogenic depends on its type and the status of neighboring residues. In this paper, we present the ProtoFold Neighborhood I ...
Bayesian Neural Nets (BNN) are increasingly used for robust organ auto-contouring. Uncertainty heatmaps extracted from BNNs have been shown to correspond to inaccurate regions. To help speed up the mandatory quality assessment (QA) of contours in radiotherapy, these heatmaps coul ...

DCGrid

An Adaptive Grid Structure for Memory-Constrained Fluid Simulation on the GPU

We introduce Dynamic Constrained Grid (DCGrid), a hierarchical and adaptive grid structure for fluid simulation combined with a scheme for effectively managing the grid adaptations. DCGrid is designed to be implemented on the GPU and used in high-performance simulations. Specific ...
Sparse eigenproblems are important for various applications in computer graphics. The spectrum and eigenfunctions of the Laplace–Beltrami operator, for example, are fundamental for methods in shape analysis and mesh processing. The Subspace Iteration Method is a robust solver for ...
Deep learning models for organ contouring in radiotherapy are poised for clinical usage, but currently, there exist few tools for automated quality assessment (QA) of the predicted contours. Bayesian models and their associated uncertainty, can potentially automate the process of ...

Deep Vanishing Point Detection

Geometric priors make dataset variations vanish

Deep learning has improved vanishing point detection in images. Yet, deep networks require expensive annotated datasets trained on costly hardware and do not generalize to even slightly different domains, and minor problem variants. Here, we address these issues by injecting deep ...
Delineation of tumors and organs-at-risk permits detecting and correcting changes in the patients' anatomy throughout the treatment, making it a core step of adaptive proton therapy (APT). Although AI-based auto-contouring technologies have sped up this process, the time needed t ...
Delineation of tumours and organs-at-risk permits detecting and correcting changes in the patients' anatomy throughout the treatment, making it a core step of adaptive external beam radiotherapy. Although auto-contouring technologies have sped up this process, the time needed to ...
Learning from 3D point-cloud data has rapidly gained momentum, motivated by the success of deep learning on images and the increased availability of 3D~data. In this paper, we aim to construct anisotropic convolution layers that work directly on the surface derived from a point c ...
This paper is concerned with a fundamental problem in geometric deep learning that arises in the construction of convolutional neural networks on surfaces. Due to curvature, the transport of filter kernels on surfaces results in a rotational ambiguity, which prevents a uniform al ...
Geometric optimization problems are at the core of many applications in geometry processing. The choice of a representation fitting an optimization problem can considerably simplify solving the problem. We consider the Nonlinear Rotation-Invariant Coordinates (NRIC) that represen ...
We introduce a construction of subspaces of the spaces of tangential vector, n-vector, and tensor fields on surfaces. The resulting subspaces can be used as the basis of fast approximation algorithms for design and processing problems that involve tangential fields. Important fea ...
This paper introduces the construction of a low-dimensional nonlinear space capturing the variability of a non-rigid shape from a data set of example poses. The core of the approach is a Sparse Principal Geodesic Analysis (SPGA) on the Riemannian manifold of discrete shells, in w ...