Electrolyte flooding in porous catalyst layers on gas diffusion electrodes (GDE) limits the stability and high-current performance of CO2 and CO electrolyzers. Here, we demonstrate the in situ electroreduction of graphene oxide (GO) to reduced graphene oxide (r-GO) within a silve
...
Electrolyte flooding in porous catalyst layers on gas diffusion electrodes (GDE) limits the stability and high-current performance of CO2 and CO electrolyzers. Here, we demonstrate the in situ electroreduction of graphene oxide (GO) to reduced graphene oxide (r-GO) within a silver catalyst layer on a carbon GDE. The r-GO introduces hydrophobicity regions in the catalyst layer that help mitigate electrolyte flooding during high current density CO2 electrolysis to CO. The flooding-resistant r-GO/Ag-coated GDE achieves a sustained Faradaic efficiency of CO at 94% for more than 8 h, compared to a rapid drop from 95% to 66% in an Ag-coated GDE without r-GO at 100 mA·cm–2. We found that GO enhances the electrochemically active surface area of the catalyst layer during CO2 electrolysis tests because the incorporation of GO increases the roughness of the catalyst layer. The in situ method of electrochemically reducing GO to r-GO provides a low-cost, practical approach that can be applied during standard spray-deposition procedures to develop flooding-resistant GDEs.@en