RS

Rahul Savani

7 records found

Game theory provides a mathematical way to study the interaction between multiple decision makers. However, classical game-theoretic analysis is limited in scalability due to the large number of strategies, precluding direct application to more complex scenarios. This survey prov ...
Policy gradient methods have become one of the most popular classes of algorithms for multi-agent reinforcement learning. A key challenge, however, that is not addressed by many of these methods is multi-agent credit assignment: assessing an agent’s contribution to the overall pe ...
Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. However, given the lack of theoretical insight, it remains unclear what the employed neural networks are learning, or how we should e ...
Policy gradient methods have become one of the most popular classes of algorithms for multi-agent reinforcement learning. A key challenge, however, that is not addressed by many of these methods is multi-agent credit assignment: assessing an agent’s contribution to the overall pe ...
Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. In this work, we empirically investigate the representational power of various network architectures on a series of one-shot games. D ...
Save for some special cases, current training methods for Generative Adversarial Networks (GANs) are at best guaranteed to converge to a ‘local Nash equilibrium’ (LNE). Such LNEs, however, can be arbitrarily far from an actual Nash equilibrium (NE), which implies that there are n ...
Save for some special cases, current training methods for Generative Adversarial Networks (GANs) are at best guaranteed to converge to a `local Nash quilibrium' (LNE). Such LNEs, however, can be arbitrarily far from an actual Nash equilibrium (NE), which implies that there are no ...