Potential transport pathways between the subtidal and subaerial part of tidal inlet systems are explored by means of a case study of Texel Inlet, The Netherlands. Based on a morphologic analysis of multi-annual, high-resolution bathymetric and topographic data sets we hypothesize
...
Potential transport pathways between the subtidal and subaerial part of tidal inlet systems are explored by means of a case study of Texel Inlet, The Netherlands. Based on a morphologic analysis of multi-annual, high-resolution bathymetric and topographic data sets we hypothesize that two mechanisms connect the subtidal and subaerial parts of the system. The first mechanism relates to deposition on the tip of the island occurring to a large extent below spring high tide level, providing a fresh sediment source available for aeolian transport during parts of the tidal cycle. The second mechanism relates to sand deposition on the wide sandflat above spring high tide level occurring during storm surge flooding. These deposits are then available for aeolian transport during regular water levels. Due to the dominant wind direction at Texel Island, this leads to extensive dune formation on the downwind end of the sandflat. @en