Embedding elastic elements into legged robots through mechanical design enables highly efficient oscillating patterns that resemble natural gaits. However, current trajectory planning techniques miss the opportunity of taking advantage of these natural motions. This work proposes
...
Embedding elastic elements into legged robots through mechanical design enables highly efficient oscillating patterns that resemble natural gaits. However, current trajectory planning techniques miss the opportunity of taking advantage of these natural motions. This work proposes a locomotion planning method that aims to unify traditional trajectory generation with modal oscillations. Our method utilizes task-space linearized modes for generating center of mass trajectories on the sagittal plane. We then use nonlinear optimization to find the gait timings that match these trajectories within the Divergent Component of Motion planning framework. This way, we can robustly translate the modes-aware centroidal motions into joint coordinates. We validate our approach with promising results and insights through experiments on a compliant quadrupedal robot.@en