In this work, we computed electrical conductivities under ambient conditions of aqueous NaCl and KCl solutions by using the Einstein-Helfand equation. Common force fields (charge q = ±1 e) do not reproduce the experimental values of electrical conductivities, viscosities, and dif
...
In this work, we computed electrical conductivities under ambient conditions of aqueous NaCl and KCl solutions by using the Einstein-Helfand equation. Common force fields (charge q = ±1 e) do not reproduce the experimental values of electrical conductivities, viscosities, and diffusion coefficients. Recently, we proposed the idea of using different charges to describe the potential energy surface (PES) and the dipole moment surface (DMS). In this work, we implement this concept. The equilibrium trajectories required to evaluate electrical conductivities (within linear response theory) were obtained by using scaled charges (with the value q = ±0.75 e) to describe the PES. The potential parameters were those of the Madrid-Transport force field, which accurately describe viscosities and diffusion coefficients of these ionic solutions. However, integer charges were used to compute the conductivities (thus describing the DMS). The basic idea is that although the scaled charge describes the ion-water interaction better, the integer charge reflects the value of the charge that is transported due to the electric field. The agreement obtained with experiments is excellent, as for the first time electrical conductivities (and the other transport properties) of NaCl and KCl electrolyte solutions are described with high accuracy for the whole concentration range up to their solubility limit. Finally, we propose an easy way to obtain a rough estimate of the actual electrical conductivity of the potential model under consideration using the approximate Nernst-Einstein equation, which neglects correlations between different ions.
@en