Simultaneous measurement of Electrocardiogram (ECG) and bio-impedance (BioZ) via disposable health patches is desired for patients suffering from chronic cardiovascular and respiratory diseases. However, a sensing IC must consume ultra-low power under
...
Simultaneous measurement of Electrocardiogram (ECG) and bio-impedance (BioZ) via disposable health patches is desired for patients suffering from chronic cardiovascular and respiratory diseases. However, a sensing IC must consume ultra-low power under a sub-volt supply to comply with miniaturized and disposable batteries. This work presents a 0.6 V analog frontend (AFE) IC consisting of an instrumentation amplifier (IA), a current source (CS) and a SAR ADC. The AFE can measure ECG and BioZ simultaneously with a single IA by employing an orthogonal chopping scheme. To ensure the IA can tolerate up to 300mVpp DC electrode offset and 400mV pp common-mode (CM) interference, a DC-servo loop (DSL) combined with a common-mode feedforward (CMFF) loop is employed. A buffer-assisted scheme boosts the IA's input impedance by 7x to 140MΩ at 10Hz. To improve the BioZ sensitivity, the CG utilizes dynamic element matching to reduce the 1/f noise of the output current, leading to 35mΩ/√Hz BioZ sensitivity down to 1Hz. The ADC shows a 9.7b ENOB when sampled at 20ksps. The total power consumption of the AFE is 3.8μW.
@en