BC

8 records found

The training of diffusion-based models for image generation is predominantly controlled by a select few Big Tech companies, raising concerns about privacy, copyright, and data authority due to their lack of transparency regarding training data. To ad-dress this issue, we propose ...
Federated Learning (FL) systems evolve in heterogeneous and ever-evolving environments that challenge their performance. Under real deployments, the learning tasks of clients can also evolve with time, which calls for the integration of methodologies such as Continual Learning. T ...
Reliable communication is a fundamental distributed communication abstraction that allows any two nodes of a network to communicate with each other. It is necessary for more powerful communication primitives, such as broadcast and consensus. Using different authentication models, ...
Federated Learning (FL) is a popular deep learning approach that prevents centralizing large amounts of data, and instead relies on clients that update a global model using their local datasets. Classical FL algorithms use a central federator that, for each training round, waits ...
Deep neural networks (DNNs) are becoming the core components of many applications running on edge devices, especially for real time image-based analysis. Increasingly, multi-faced knowledge is extracted by executing multiple DNNs inference models, e.g., identifying objects, faces ...

Masa

Responsive Multi-DNN Inference on the Edge

Deep neural networks (DNNs) are becoming the core components of many applications running on edge devices, especially for real time image-based analysis. Increasingly, multi-faced knowledge is extracted via executing multiple DNNs inference models, e.g., identifying objects, face ...

Artifact

Masa: Responsive Multi-DNN Inference on the Edge

This artifact is a guideline how the Edgecaffe framework, presented in [1], can be used. Edgecaffe is an open-source Deep Neural Network framework for efficient multi-network inference on edge devices. This framework enables the layer by layer execution and fine-grained control d ...

MemA

Fast Inference of Multiple Deep Models

The execution of deep neural network (DNN) inference jobs on edge devices has become increasingly popular. Multiple of such inference models can concurrently analyse the on-device data, e.g. images, to extract valuable insights. Prior art focuses on low-power accelerators, compre ...