AB
Andy Berry
7 records found
1
Balance recovery after tripping often requires an active adaptation of foot placement. Thus far, few attempts have been made to actively assist forward foot placement for balance recovery employing wearable devices. This study aims to explore the possibilities of active forward f
...
Gyroscopic actuators are appealing for wearable applications due to their ability to provide overground balance support without obstructing the legs. Multiple wearable robots using this actuation principle have been proposed, but none has yet been evaluated with humans. Here we u
...
Previous research has identified two major non-stepping strategies used to recover balance following mechanical perturbations: ankle and hip strategy [1, 2]. These strategies are selected depending on eg the perturbation magnitude, prior experience, and configuration of the suppo
...
Wearable actuators in lower-extremity active orthoses or prostheses have the potential to address a variety of gait disorders. However, whenever conventional joint actuators exert moments on specific limbs, they must simultaneously impose opposing reaction moments on other limbs,
...
Balancing the upper body is pivotal for upright and efficient gait. While models have identified potentially useful characteristics of biarticular thigh muscles for postural control of the upper body, experimental evidence for their specific role is lacking. Based on theoretical
...
Despite the long history of studies on the singularity problem inherent to single-gimbal control moment gyroscopes, few existing gimbal steering laws can both accurately track moments and escape or avoid every type of singularity. The most-referenced steering laws perturb the sys
...
Gyroscopic actuation is appealing for wearable applications due to its ability to impart free moments on a body without exoskeletal structures on the joints.We recently proposed an unobtrusive balancing aid consisting of multiple parallelmounted control moment gyroscopes (CMGs) c
...