ZL
Zirui Li
3 records found
1
Predicting the trajectories of road agents is fundamental for self-driving cars. Trajectory prediction contains many sources of uncertainty in data and modelling. A thorough understanding of this uncertainty is crucial in a safety-critical task like auto-piloting a vehicle. In pr
...
Resolving predicted conflicts is vital for safe and efficient autonomous vehicles (AV). In practice, vehicular motion prediction faces inherent uncertainty due to heterogeneous driving behaviours and environments. This spatial uncertainty increases non-linearly with prediction ti
...
Continual driver behaviour learning for connected vehicles and intelligent transportation systems
Framework, survey and challenges
Modelling, predicting and analysing driver behaviours are essential to advanced driver assistance systems (ADAS) and the comprehensive understanding of complex driving scenarios. Recently, with the development of deep learning (DL), numerous driver behaviour learning (DBL) method
...