AW

Adrian Wills

2 records found

In this paper, a unified identification framework called constrained subspace method for structured state-space models (COSMOS) is presented, where the structure is defined by a user specified linear or polynomial parametrization. The new approach operates directly from the input ...

Affinely parametrized state-space models

Ways to maximize the Likelihood Function

Using Maximum Likelihood (or Prediction Error) methods to identify linear state space model is a prime technique. The likelihood function is a nonconvex function and care must be exercised in the numerical maximization. Here the focus will be on affine parameterizations which all ...