YQ
Y. Qin-Dregely
3 records found
1
Light scattering by biological tissues sets a limit to the penetration depth of high-resolution optical microscopy imaging of live mammals in vivo. An effective approach to reduce light scattering and increase imaging depth is to extend the excitation and emission wavelengths to
...
Using short-wave infrared wavelength advantages, we demonstrate one-photon fluorescence confocal microscopy of adult mouse brains with penetration depths up to 1.7mm. This is achieved by labeling quantum dots with 1300 nm excitation and 1700 nm emission and detecting them with a
...
Optical microscopy is a valuable tool for in vivo monitoring of biological structures and functions because of its noninvasiveness. However, imaging deep into biological tissues is challenging due to the scattering and absorption of light. Previous research has shown that the two
...