Purpose: Gold mining has historically and significantly contributed to the Colombian economy. Gold extraction in Colombia is mainly done through two techniques: open-pit and alluvial mining. In this study, the environmental impacts of both these mining systems were analyzed using
...
Purpose: Gold mining has historically and significantly contributed to the Colombian economy. Gold extraction in Colombia is mainly done through two techniques: open-pit and alluvial mining. In this study, the environmental impacts of both these mining systems were analyzed using the life cycle assessment (LCA) framework, including identification of the system components that contribute most to impacts. Methods: Inventory data were obtained for two medium-scale mines in Colombia, one representing the open-pit method and the other the alluvial method. Environmental impacts were classified and characterized by mid-point impact categories and further aggregated into end-point indicators through the ReCiPe (v. 1.11) methodology, which uses a hierarchist perspective. Results: Results for end-point indicators show that the open-pit mining presents higher values in the human health damage category, influenced primarily by tailings and by the excavation process. For the alluvial mining, the overall impacts were an order of magnitude lower, with ecosystem quality as the most significant contributor due to the stripping of soil and vegetation. In the case of mid-point indicators, freshwater and marine ecotoxicity contribute the most to open-pit mining, while for alluvial mining, metal depletion and natural land transformation contribute the most. Climate change is also a significant impact category for alluvial and open-pit mining. Conclusions: The is a substantial difference in environmental impacts between the two mining systems: the quantified total environmental impact was 1.0 × 1004 points for the open-pit mine and 2.4 × 1003 points for the alluvial mine. Since these mines represent specific Colombian operational conditions, this conclusion cannot be confidently extended to other operational contexts. For example, results in other cases may depend on the local geological features and natural environment conditions. Knowing the critical mining supply chain stages for environmental performance will allow the decision-makers to provide the tools for more sustainable extraction and production.
@en