MB

Mohamed Baioumy

6 records found

Active inference is a mathematical framework that originated in computational neuroscience. Recently, it has been demonstrated as a promising approach for constructing goal-driven behavior in robotics. Specifically, the active inference controller (AIC) has been successful on sev ...
This work presents a fault-tolerant control scheme for sensory faults in robotic manipulators based on active inference. In the majority of existing schemes a binary decision of whether a sensor is healthy (functional) or faulty is made based on measured data. The decision bounda ...

Beta Residuals

Improving Fault-Tolerant Control for Sensory Faults via Bayesian Inference and Precision Learning

Model-based fault-tolerant control (FTC) often consists of two distinct steps: fault detection & isolation (FDI), and fault accommodation. In this work we investigate posing fault-tolerant control as a single Bayesian inference problem. Previous work showed that precision lea ...
This work presents a novel fault-tolerant control scheme based on active inference. Specifically, a new formulation of active inference which, unlike previous solutions, provides unbiased state estimation and simplifies the definition of probabilistically robust thresholds for fa ...
We present a fault tolerant control scheme for robot manipulators based on active inference. The proposed solution makes use of the sensory prediction errors in the free-energy to simplify the residuals and thresholds generation for fault detection and isolation and does not requ ...
The main task of robotic grippers, holding an object, does not require work theoretically. Yet grippers consume significant amounts of energy in practice. This paper presents an approach for designing an energy-saving drive for robotic grippers employing a Statically Balanced For ...