The range of applications that require processing of temporally and spatially distributed sensory data is expanding. Common challenges in domains with these characteristics are sound reasoning about uncertain phenomena and coping with the dynamic nature of processes that influenc
...
The range of applications that require processing of temporally and spatially distributed sensory data is expanding. Common challenges in domains with these characteristics are sound reasoning about uncertain phenomena and coping with the dynamic nature of processes that influence these phenomena. To address these challenges we propose the use of causal Bayesian Networks for probabilistic reasoning and introduce the Logical OR gate in order to combine them with dynamic processes estimated by arbitrary Markov processes. To illustrate the genericness of the proposed approach, we apply it in a wildlife protection use case. Furthermore we show that the resulting model supports modularization of computations, which allows for efficient decentralized processing.@en