Mv

M. van der Helm

11 records found

Signal transduction mechanisms are key to living systems. Cells respond to signals by changing catalytic activity of enzymes. This signal responsive catalysis is crucial in the regulation of (bio)chemical reaction networks (CRNs). Inspired by these networks, we report an artifici ...
Catalysis is an essential function in living systems and provides a way to control complex reaction networks. In natural out-of-equilibrium chemical reaction networks (CRNs) driven by the consumption of chemical fuels, enzymes provide catalytic control over pathway kinetics, givi ...
The entire research described in this thesis is part of the larger field of Systems Chemistry. This field of chemistry deals with the understanding of the complexity of biology by mimicking biochemical reaction networks with emergent properties attributed to the entire system. In ...
Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular en ...
Acylhydrazones formation has been widely applied in materials science and biolabeling. However, their sluggish condensation rate under neutral conditions limits its application. Herein, indolines with electron-donating groups are reported as a new catalyst scaffold, which can cat ...
Signal transduction in living systems is the conversion of information into a chemical change, and is the principal process by which cells communicate. In nature, these functions are encoded in non-equilibrium (bio)chemical reaction networks (CRNs) controlled by enzymes. However, ...
Supramolecular encapsulation is known to alter chemical properties of guest molecules. We have applied this strategy of molecular encapsulation to temporally control the catalytic activity of a stable copper(I)–carbene catalyst. Encapsulation of the copper(I)–carbene catalyst by ...
Enzymes are supreme catalysts when it comes to high enantiopurities and their immobilization will pave the way for continuous operation. In this context, we show the covalent immobilization of hydroxynitrile lyases HbHNL ( ...

Publisher Correction

Organocatalysis in aqueous media (Nature Reviews Chemistry, (2019), 3, 8, (491-508), 10.1038/s41570-019-0116-0)

In the main text, a citation to Ref 55 has been changed to Ref 182 (and vice versa). In the Supplementary information, corrections were made to reactions 16–18, and Refs 4, 5 and 42. Compounds numbers in the text have been styled to emphasize they represent chemical species..@en ...
Even though enzymes are the cornerstones of living systems, it has so far proven difficult to deploy artificial catalysts in a biological setting. Organocatalysts are arguably well-suited artificial catalysts for this purpose because, compared with enzymes and inorganic catalysts ...
Rhodococcus strains are ubiquitous in nature and known to metabolise a wide variety of compounds. At the same time, asymmetric reduction of C=C bonds is important in the production of high-valued chiral building blocks. In order to evaluate if Rhodococci can be used for this task ...