CK
C. Kraaikamp
68 records found
1
Recently a new class of continued fraction algorithms, the (N,α)-expansions, was introduced in Kraaikamp and Langeveld (J Math Anal Appl 454(1):106–126, 2017) for each N∈N, N≥2 and α∈(0,N-1]. Each of these continued fraction algorithms has only finitely many possible digits. Thes
...
We give two results for deducing dynamical properties of piecewise Möbius interval maps from their related planar extensions. First, eventual expansivity and the existence of an ergodic invariant probability measure equivalent to Lebesgue measure both follow from mild finiteness
...
In [1], Boca and the fourth author of this paper introduced a new class of continued fraction expansions with odd partial quotients, parameterized by a parameter α ∈ [g, G], where g = 12 (√5 − 1) and G = g + 1 = 1/g are the two golden mean numbers
...
For N∈ N≥ 2 and α∈ R such that 0<α≤N-1, we define Iα: = [α, α+ 1] and Iα-:=[α,α+1) and investigate the continued fraction map Tα:Iα→Iα-, which is defined as Tα(x):=Nx-d(x), where d: Iα→ N is defined by d(x):=⌊Nx-α⌋. For N∈ N≥ 7, for
...
@en
In 1991 a new class of continued fraction expansions, the S-expansions, was introduced in this journal. This class contains many classical continued fraction algorithms, such as Nakada’s α-expansions (for α between 1/2 and 1), the nearest integer continued fraction, Minkowski’s d
...
Natural extensions for Nakada's α-expansions
Descending from 1 to g2
By means of singularisations and insertions in Nakada's α-expansions, which involves the removal of partial quotients 1 while introducing partial quotients with a minus sign, the natural extension of Nakada's continued fraction map Tα is given for (10-2)/3≤α<1. From our constr
...
Three consecutive approximation coefficients
Asymptotic frequencies in semi-regular cases
Denote by p n /q n ,n=1,2,3,…, pn/qn,n=1,2,3,…,
the sequence of continued fraction convergents of a real irrational number x x
. Define the sequence of approximation coefficients by θ n (x):=q n |q n x−p n |,n=1,2,3,… θn(x):=qn|qnx−pn|,n=1,2,3,…
. In the case of regular conti
...
In this paper we consider continued fraction (CF) expansions on intervals different from [0,1]. For every x in such interval we find a CF expansion with a finite number of possible digits. Using the natural extension, the density of the invariant measure is obtained in a number o
...
We give an explicit evaluation, in terms of products of Jacobsthal numbers, of the Hankel determinants of order a power of two for the period-doubling sequence. We also explicitly give the eigenvalues and eigenvectors of the corresponding Hankel matrices. Similar considerations g
...