This Thesis presents the design and implementation of a preliminary Fault Detection Isolation and Recovery (FDIR) architecture for LUMIO, a CubeSat mission to the Moon. The baseline of the FDIR is the Failure Modes Effects (and Criticality) Analysis (FMEA/FMECA) of the mission, t
...
This Thesis presents the design and implementation of a preliminary Fault Detection Isolation and Recovery (FDIR) architecture for LUMIO, a CubeSat mission to the Moon. The baseline of the FDIR is the Failure Modes Effects (and Criticality) Analysis (FMEA/FMECA) of the mission, through which the potential failure scenarios are classified. The FDI design is based on the use of simple checks, mainly cross-checks. The FR strategy is based on the application of a sequence of recovery levels. The algorithm was implemented in Simulink and a simulation model of the satellite was developed to perform verification. The study paved the way for the advancement of the project, since the critical items were identified, and compensating provisions were proposed. The tests performed proved the ability of the FDIR to detect and recover the preliminary FMECA failures; hence, to increase the autonomy of LUMIO and the overall reliability of the mission.