Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary
...
Energy-rich sludge can be obtained from primary clarifiers preceding biological reactors. Alternatively, the incoming wastewater can be sent to a very-high-loaded activated sludge system, i.e., a so-called A-stage. However, the effects of applying an A-stage instead of a primary clarifier, on the subsequent sludge digestion for long-term operation is still unknown. In this study, biogas production and permeate quality, and filterability characteristics were investigated in a lab-scale anaerobic membrane bioreactor for primary sludge and A-stage sludge (A-sludge) treatment. A higher specific methane yield was obtained from digestion of A-sludge compared to primary sludge. Similarly, specific methanogenic activity was higher when the anaerobic membrane bioreactor was fed with A-sludge compared to primary sludge. Plant-wide mass balance analysis indicated that about 35% of the organic matter in wastewater was recovered as methane by including an A-stage, compared to about 20% with a primary clarifier.
@en