Mv
M.J.L. van Tooren
248 records found
1
...
Harness 3D routing is one of the most challenging steps in the design of aircraft Electrical Wiring Interconnection System (EWIS). This is due not only to the intrinsic complexity of the EWIS, but also to the increasing number of applying design constraints and its dependency on
...
Variable stiffness composites, where fibre angles are spatially varied by steering the tows in curvilinear paths to optimise the structural response, have been a subject of intensive study. In this paper, experimental validation of the variable stiffness composite technology is c
...
This paper discusses the development of a multidisciplinary design optimization tool intended for electronically power aircraft. The test subject of the optimizations is a hybrid blended wing body, delta wing UAV. First, the optimization problem is presented with the objective fu
...
An alternative to the lamination parameters framework is proposed that uses the fiber angles as design variables: the manufacturing finite element mesh (MFEM) framework. The structure and implementation of the MFEM framework allows for both stiffness and strength constraints. In
...
The least-squares finite element method is used to solve the compressible Euler equations around airfoils in transonic regime. The symbolic analysis method is used to generate the element stiffness and force matrices. The equations of the element matrices are derived symbolically
...
The application and computational efficiency of wing aerostructural optimization us- ing simultaneous analysis and design (SAND) strategy is investigated. A coupled adjoint aerostructural analysis method based on quasi-three-dimensional aerodynamic analysis is used for this resea
...
In this paper, a method is introduced that predicts the influence of gaps and overlaps introduced by fiber steering on the stiffness and strength of composite laminates. This method is based on the incorporation of a “density functional” which translates the effect of discrete ga
...
This paper presents a method for wing aerostructural analysis and optimization, which needs much lower computational costs, while computes the wing drag and structural deformation with a level of accuracy comparable to the higher fidelity CFD and FEM tools. A quasi-threedimension
...
A trust region filter-SQP method is used for wing multi-fidelity aerostructural optimization. Filter method eliminates the need for a penalty function, and subsequently a penalty parameter. Besides, it can easily be modified to be used for multi-fidelity optimization. A low fidel
...