To aid in the integration of renewable and residual energy sources in the energy system, energy flexibility is required. By charging and discharging energy storage, energy flexibility can be created and heat demand and heat generation can be matched in time. One possible source o
...
To aid in the integration of renewable and residual energy sources in the energy system, energy flexibility is required. By charging and discharging energy storage, energy flexibility can be created and heat demand and heat generation can be matched in time. One possible source of energy flexibility is the thermal capacity of the water in district heating network pipes. Effective use of this thermal energy storage requires efficient techniques to determine the available flexibility. The goal of this paper is to determine the required level of detail of a substation model to characterise network flexibility through simulation. The substation models differ in the assumptions that are made and range from a detailed, non-linear model to a simple, linear model. To analyse the results, we identify different phases occurring during a network flexibility activation. By determining if reduced models are as effective in reproducing important flexibility characteristics as more detailed and computationally expensive models, network flexibility characterisation can be simplified and sped up. Results show that the network flexibility can be adequately characterised even with very simple models, provided correct assumptions are made.
@en