Every now and then, every marine engineer dreams of a compact, lightweight and inexhaustible energy source to power large ships across the seven seas. Nuclear fusion of deuterium and tritium promises to be a safe, compact, carbon-free, and inexhaustible energy source. Even though
...
Every now and then, every marine engineer dreams of a compact, lightweight and inexhaustible energy source to power large ships across the seven seas. Nuclear fusion of deuterium and tritium promises to be a safe, compact, carbon-free, and inexhaustible energy source. Even though it will take decades before conventional power plants may be replaced with nuclear fusion, the concept of nuclear fusion for marine propulsion has already been put on the table by commercial parties. This research investigates the potential of nuclear fusion onboard ships. The design investigates putting the smallest imaginable magnetic confinement reactor, ARC, on a ship. The only commercial ship requiring significant amounts of power is the Queen Mary 2. The large power output of ARC (200 MWe) is one of the major issues of putting a fusion reactor on a ship. Other issues may include intact stability, structural design and influences of vibrations on the fusion reactor. All in all, we found that a fusion reactor onboard a ship is unlikely to be feasible in the near future.@en