Micropropulsion is universally considered to be a key technology enabling nano- and pico- satellites to perform more complex missions. However, past research has shown that nozzle efficiencies at the microscale are far inferior to their macro scale counterparts. These low effici
...
Micropropulsion is universally considered to be a key technology enabling nano- and pico- satellites to perform more complex missions. However, past research has shown that nozzle efficiencies at the microscale are far inferior to their macro scale counterparts. These low efficiencies can be attributed to the relatively high viscous losses associated with this microscale. This thesis conducted a three-dimensional numerical study to investigate the impact of the nozzle geometry on the viscous losses. Furthermore, the designed micronozzles are fabricated and the ground work is laid for experimental testing of these nozzles. Results of the numerical study show that by application of a new double depth micro aerospike design nozzle efficiencies can be improved by as much as 41.2%.