Quantification of human impact on water, sediment, and nutrient fluxes at the global scale demands characterization of reservoirs with an accuracy that is presently unavailable. This letter presents a new method, based on virtual dam placement, to make accurate estimations of are
...
Quantification of human impact on water, sediment, and nutrient fluxes at the global scale demands characterization of reservoirs with an accuracy that is presently unavailable. This letter presents a new method, based on virtual dam placement, to make accurate estimations of area-volume relationships of large reservoirs, using solely readily available elevation data. The new method is based on regional similarity of area-volume relationships. The essence of the method is that virtual reservoirs are created in the vicinity of an existing reservoir to derive area-volume relationships for the existing reservoir. The derived area-volume relationships reproduced in situ bathymetric data well. An intercomparison for twelve reservoirs resulted in an average R2 = 0.93. This is a significant improvement on estimates using the best existing global regression model, which gives R2 = 0.54 for the same set of reservoirs.
@en