Nanostructured silicon has been intensively investigated as a high capacity Li-ion battery anode. However, the commercial introduction still requires advances in the scalable synthesis of sophisticated Si nanomaterials and electrodes. Moreover, the electrode degradation due to vo
...
Nanostructured silicon has been intensively investigated as a high capacity Li-ion battery anode. However, the commercial introduction still requires advances in the scalable synthesis of sophisticated Si nanomaterials and electrodes. Moreover, the electrode degradation due to volume changes upon de-/lithiation, low areal electrode capacity, and application of large amounts of advanced conductive additives are some of the challenging aspects. Here we report a Si electrode, prepared from direct deposition of Si nanoparticles on a current collector without any binder or conducting additives, that addresses all of the above issues. It exhibits an excellent cycling stability and a high capacity retention taking advantages of what appears to be a locally protective, yolk-shell reminiscent, solid electrolyte interphase (SEI) formation. Cycling an electrode with a Si nanoparticle loading of 2.2 mg cm−2 achieved an unrivalled areal capacity retention, specifically, up to 4.2 mAh cm−2 and ~ 1.5 mAh cm−2 at 0.8 mA cm−2 and 1.6 mA cm−2, respectively.
@en