Characterization and stabilization of the downward continuation problem for airborne gravity data

More Info
expand_more

Abstract

In this study, we compare six commonly used methods for the downward continuation of airborne gravity data. We consider exact and noisy simulated data on grids and along flight trajectories and real data from the GRAV-D airborne campaign. We use simulated and real surface gravity data for validation. The methods comprise spherical harmonic analysis, least-squares collocation, residual least-squares collocation, least-squares radial basis functions, the inverse Poisson method and Moritz’s analytical downward continuation method. We show that all the methods perform similar in terms of surface gravity values. For real data, the downward continued airborne gravity values are used to compute a geoid model using a Stokes-integral-based approach. The quality of the computed geoid model is validated using high-quality GSVS17 GPS-levelling data. We show that the geoid model quality is similar for all the methods. However, the least-squares collocation approach appears to be more flexible and easier to use than the other methods provided that the optimal covariance function is found. We recommend it for the downward continuation of GRAV-D data, and other methods for second check.

Files

S00190_022_01607_y.pdf
(pdf | 11.7 Mb)
- Embargo expired in 01-07-2023
Unknown license