A recursive Lovász theta number for simplex-avoiding sets

More Info
expand_more

Abstract

We recursively extend the Lovász theta number to geometric hypergraphs on the unit sphere and on Euclidean space, obtaining an upper bound for the independence ratio of these hypergraphs. As an application we reprove a result in Euclidean Ramsey theory in the measurable setting, namely that every k-simplex is exponentially Ramsey, and we improve existing bounds for the base of the exponential.

Files

S0002_9939_2022_15940_1_1.pdf
(pdf | 1.11 Mb)
- Embargo expired in 01-07-2023
Unknown license