Probabilistic Design of Airfoils for Horizontal Axis Wind Turbines

More Info
expand_more

Abstract

We describe a probabilistic approach to design airfoils for wind energy applications. An analytical expression is derived for the probability of perturbations to the operational blade-section angle of attack. It includes the combined influence of wind shear, yaw-misalignment, and turbulence intensity. The theoretical fluctuations in angle of attack are validated against an aero-structural simulation of a 10 MW horizontal axis wind turbine, operating under different inflow conditions. Finally we incorporate the probabilistic approach into a multi-objective airfoil optimization problem, which is solved with a genetic algorithm. The results illustrate the compromise between airfoil performance for a specific angle of attack and robustness of airfoil performance over a large range of angle of attack fluctuations