Evolutionary Optimisation of a Flexible-Launcher Simple Adaptive Control System
More Info
expand_more
Abstract
Attitude control of conventional launchers is relatively easy and straightforward and gives an adequate performance when applied to the nominal vehicle and mission. However, in the presence of environmental disturbances and vehicle design uncertainties, more robust types of controllers are required to guarantee stable attitudes. This chapter discusses the application of Simple Adaptive Control for the pitch control of a conventional flexible launcher. Because of the large number of design parameters, an optimisation procedure based on an evolutionary algorithm has been applied. With a floating-point representation for the design parameters, stochastic universal sampling selection, arithmetic crossover and non-uniform mutation, the performance of the controller is analysed, and it is identified how the developed methodology can streamline the (conceptual) design phase. Application of Pareto ranking enabled the simultaneous minimisation of the state deviation and the control effort, while the oscillation of the control has been used as an optimisation criterion. A conclusive simulation shows the controller performance for the flexible launch system.