Roll angle estimator based on angular rate measurements for bicycles

More Info
expand_more

Abstract

Measuring the roll angle of single-track vehicles has always been a challenging task; however, accurate and reliable measurements of this magnitude are paramount for controlling the stability of these vehicles, both for autonomous riding and for safety reasons. A roll angle estimation is also useful in other situations, such as tests to perform the identification of the parameters of the rider control. In this work, a new algorithm is presented for estimating the roll angle of bicycles. This estimator, based on the well-known Kalman filter, employs a wheel speed sensor to approximate the speed of the vehicle, and three angular rate sensors, which are currently small and affordable sensors. The proposed method was implemented in a microcontroller and tested in a bicycle and the results were compared with measurements obtained with optical sensors, showing a good correlation. Although it has not been tested in motorcycles, comparable results are expected.

Files

Roll_angle_estimator_based_on_... (pdf)
(pdf | 2.84 Mb)
Unknown license

Download not available