Tilt series STEM simulation of a 25×25×25 nm semiconductor with characteristic X-ray emission

More Info
expand_more

Abstract

The detection and quantification of fabrication defects is vital to the ongoing miniaturization of integrated circuits. The atomic resolution of HAADF-STEM combined with the chemical sensitivity of EDS could provide the means by which this is achieved for the next generation of semiconductor devices. To realize this, however, a streamlined acquisition and analysis procedure must first be developed. Here, we report the simulation of a HAADF-STEM and EDS tilt-series dataset of a PMOS finFET device which will be used as a testbed for such a development. The methods used to calculate the data and the details of the specimen model are fully described here. The dataset consists of 179 projections in 2° increments with HAADF images and characteristic X-ray maps for each projection. This unusually large calculation has been made possible through the use of a national supercomputer and will be made available for the development and assessment of reconstruction and analysis procedures for this highly significant industrial application.