Realizing quantum-safe information sharing
Implementation and adoption challenges and policy recommendations for quantum-safe transitions
More Info
expand_more
Abstract
By utilizing the properties of quantum mechanics, quantum computers have the potential to factor a key pair of a large prime number and break some of the core cryptographic primitives that most information infrastructures depend on. This means that today's widely used cryptographic algorithms can soon become unsafe and need to be modified with quantum-safe (QS) cryptography. While much work is still needed in developing QS cryptographic algorithms, the institutional, organizational, and policy aspects of transitioning the current infrastructures have received less attention. This paper provides an empirical analysis of QS transition challenges and policy recommendations for moving to a QS situation. We analyzed the data collected through interviews with experts and practitioners from the Dutch government. The results reveal that institutional, organizational and policy aspects of QS transitions are interconnected, and solutions for QS transitions are scattered. Consequently, organizations may face a Catch-22 loop without further actionable approaches and planning for QS transitions.