Synthesis of monodisperse, highly cross-linked, fluorescent PMMA particles by dispersion polymerization

More Info
expand_more

Abstract

We describe a facile method to synthesize sterically stabilized monodisperse fluorescent poly(methyl methacrylate) (PMMA) colloids in the polar solvent mixture water/methanol with either a core-shell or a homogeneously cross-linked structure by dispersion polymerization. The particles were sterically stabilized by the polymer poly(vinylpyrrolidone) (PVP). The morphology of the particles was controlled by varying the moment at which the gradual addition of cross-linker and dye was started. The absence of these extra agents at a time when the particle nuclei formed reduced the negative effects on this important process to a minimum and produced a core-shell structure, whereas an essentially homogeneously cross-linked fluorescent polymer colloid structure could be obtained by reducing the starting time of the addition of dye and cross-linker to zero. Three different dyes were chemically incorporated into the polymer network. Such dyes are important for the use of the particles in confocal scanning laser microscopy studies aimed at characterizing concentrated dispersions quantitatively in real space. A series of PMMA particles with different sizes were obtained through the variation of the weight ratio of solvents and the content of cross-linker. Furthermore, the swelling properties of the cross-linked PMMA particles in a good solvent (tetrahydrofuran) were investigated. The particles were stable in polar solvents (water and formamide) but could also successfully be transferred to apolar solvents such as decahydronaphthalene (decalin). The PVP stabilizer also allowed the particles to be permanently bonded in flexible strings by the application of an external electric field.