Testing and Monitoring of Earth Structures
More Info
expand_more
Abstract
Monitoring structural behavior of earth structures during construction and in service is a common practice done for safety reasons, consolidation control and maintenance needs. Several are the techniques available for measuring displacements, water pressures and total stresses, not only in these geotechnical structures but also at their foundations. Materials testing has been used for calibrating models for structural design and behavior prediction, and these models can be validated with instrumentation data as well. Relatively recent investigation on the behavior of these materials considering their degree of saturation focuses on monitoring the evolution of water content or suction as function of soil-atmosphere interaction, necessary to predict cyclic and/or accumulated displacements, and has huge potential to predict the impact of climate changes on the performance of existing geotechnical structures. This new need justifies the investment on developing sensors able to be used for in situ monitoring of water in the soils, such as those presented here. Testing and monitoring becomes even more important nowadays when, for sustainability purposes, traditional construction materials are replaced by other geo-materials with unknown behavior and long-term performance (mainly accumulated displacements). Existing experimental protocols and monitoring equipment are used for such cases, however new techniques must be developed to deal with particular behaviors. Three case studies are presented and discussion is made on monitoring equipment used and how monitored data helped understanding the behaviors observed.