Axies: Identifying and Evaluating Context-Specific Values

More Info
expand_more

Abstract

The pursuit of values drives human behavior and promotes cooperation. Existing research is focused on general (e.g., Schwartz) values that transcend contexts. However, context-specific values are necessary to (1) understand human decisions, and (2) engineer intelligent agents that can elicit human values and take value-aligned actions. We propose Axies, a hybrid (human and AI) methodology to identify context-specific values. Axies simplifies the abstract task of value identification as a guided value annotation process involving human annotators. Axies exploits the growing availability of valueladen text corpora and Natural Language Processing to assist the annotators in systematically identifying context-specific values. We evaluate Axies in a user study involving 60 subjects. In our study, six annotators generate value lists for two timely and important contexts: Covid-19 measures, and sustainable Energy. Then, two policy experts and 52 crowd workers evaluate Axies value lists. We find that Axies yields values that are context-specific, consistent across different annotators, and comprehensible to end users.

Files

P799.pdf
(pdf | 1.77 Mb)
Unknown license