Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics

More Info
expand_more

Abstract

Phosphate is a vital nutrient but its presence in surface waters even at very low concentrations can lead to eutrophication. Adsorption is often suggested as a step for reducing phosphate down to very low concentrations. Porous metal oxides can be used as granular adsorbents that have a high surface area and hence a high adsorption capacity. But from a practical point of view, these adsorbents also need to have good adsorption kinetics. The surface area of such adsorbents comes from pores of varying pore size and the pore size distribution (PSD) of the adsorbents can affect the phosphate adsorption kinetics. In this study, the PSD of 4 different adsorbents was correlated with their phosphate adsorption kinetics. The adsorbents based on iron and aluminium (hydr)oxide were grinded and the adsorption performance was studied as a function of their particle size. This was done to identify diffusion limitations due to the PSD of the adsorbents. The phosphate adsorption kinetics were similar for small particles of all the adsorbents. For larger particles, the adsorbents having pores larger than 10 nm (FSP and DD6) showed faster adsorption than adsorbents with smaller pores (GEH and CFH). Even though micropores (pores < 2 nm) contributed to a higher portion of the adsorbent surface area, pores bigger than 10 nm were needed to increase the rate of adsorption.

Files

Manuscript_Effect_of_particle_... (pdf)
(pdf | 1.36 Mb)
- Embargo expired in 05-10-2020