Carbides-anti-perovskites Mn3(Sn, Zn)C
Potential candidates for an application in magnetic refrigeration
More Info
expand_more
Abstract
In the present study, the combination of the First-principles density functional theory (DFT) calculations and Monte Carlo (MC) methods are investigated on the structural, magneto-electronic and magneto-caloric properties of the anti-perovskite carbides Mn3XC with X = Sn, Zn. Firstly, the electronic band structure and total/partial density of state of both Mn3SnC and Mn3ZnC are computed and compared to other theoretical and experimental works. Our results reveal that both Mn3SnC and Mn3ZnC structures exhibit a metallic behavior and the valence (VB) and conduction (CB) bands overlap considerably. Additionally, the magnetic and magneto-caloric properties including heat capacity (C), the entropy change (ΔS), adiabatic temperature (ΔT) and the refrigerant capacity (RC) were studied under the magnetic field ranging between 0 and 5 T for both anti-perovskites. Our findings suggest that both anti-perovskite carbide (Mn3SnC and Mn3ZnC) can act as an effective substrate for magnetic refrigeration.