Optimal drag-energy entry guidance via pseudospectral convex optimization
More Info
expand_more
Abstract
In this paper a new drag-energy scheme, based on the use of pseudospectral methods and convex optimization, is proposed. One of the most successful technologies to deal with atmospheric entry is the class of drag-tracking schemes, a direct heritage of the Space Shuttle program. The method that we propose exploits the drag-dynamics, and allows for an effcient automatic design of an optimal entry profile satisfying all the longitudinal constraints acting on the vehicle. A new representation of the entry-guidance problem, able to loss-less convexify the formulation, is provided. Numerical simulations confirm the validity of the proposed scheme as tool for further improving the autonomy of modern entry guidance systems, with a mean final range-to-go error in the order of three hundred meters, and the capability to re-compute a complete constrained trajectory to meet the mission requirements.