Acceptance of driverless vehicles
Results from a large cross-national questionnaire study
More Info
expand_more
Abstract
Shuttles that operate without an onboard driver are currently being developed and tested in various projects worldwide. However, there is a paucity of knowledge on the determinants of acceptance of driverless shuttles in large cross-national samples. In the present study, we surveyed 10,000 respondents on the acceptance of driverless vehicles and sociodemographic characteristics, using a 94-item online questionnaire. After data filtering, data of 7,755 respondents from 116 countries were retained. Respondents reported that they would enjoy taking a ride in a driverless vehicle (mean = 4.90 on a scale from 1 = disagree strongly to 6 = agree strongly). We further found that the scores on the questionnaire items were most appropriately explained through a general acceptance component, which had loadings of about 0.7 for items pertaining to the usefulness of driverless vehicles and loadings between 0.5 and 0.6 for items concerning the intention to use, ease of use, pleasure, and trust in driverless vehicles, as well as knowledge of mobility-related developments. Additional components were identified as thrill seeking, wanting to be in control manually, supporting a car-free environment, and being comfortable with technology. Correlations between sociodemographic characteristics and general acceptance scores were small (<0.20), yet interpretable (e.g., people who reported difficulty with finding a parking space were more accepting towards driverless vehicles). Finally, we found that the GDP per capita of the respondents' country was predictive of countries' mean general acceptance score (ρ=-0.48 across 43 countries with 25 or more respondents). In conclusion, self-reported acceptance of driverless vehicles is more strongly determined by domain-specific attitudes than by sociodemographic characteristics. We recommend further research, using objective measures, into the hypothesis that national characteristics are a predictor of the acceptance of driverless vehicles.