Experimental investigation of wave interaction with a thin floating sheet

More Info
expand_more

Abstract

Very flexible floating structures have been proposed for offshore floating photovoltaics installation. Characterized by having structural lengths much longer than wavelengths, small thickness, and low bending stiffness, these structures are prone to large vertical deflections and strong hydroelastic interactions. Experimental information on these structures is scarce. In this study, we employed digital image correlation (DIC) to investigate the hydroelastic interaction of a flexible floating sheet with a length-to-height ratio of 1,000 in regular long-crested head waves. The wavelength was one-tenth and one-fifth of the structure length, with a wave steepness of 0.04. The repeatability of wave conditions and measurement results was demonstrated, and measurement errors were quantified. Surface elevations showed that the sheet followed a local wave elevation in long waves. In shorter waves, strong hydroelastic interactions led to wave lengthening underneath the floating structure and three-dimensional (3D) effects across the structure width. Wave lengthening agreed well with prediction from the hydroelastic dispersion relation. Observed 3D effects necessitate further research into the possible influence of viscoelastic effects. It was shown that the DIC technique is suitable to measure flexible floating structures in waves with low error and good repeatability. Experimental data are publicly available.

Files

Abst_31_4_p435_mk76_Schreier_2... (pdf)
(pdf | 0.201 Mb)
Unknown license

Download not available