Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference

More Info
expand_more

Abstract

An important feature of Bayesian statistics is the opportunity to do sequential inference: The posterior distribution obtained after seeing a dataset can be used as prior for a second inference. However, when Monte Carlo sampling methods are used for inference, we only have a set of samples from the posterior distribution. To do sequential inference, we then either have to evaluate the second posterior at only these locations and reweight the samples accordingly, or we can estimate a functional description of the posterior probability distribution from the samples and use that as prior for the second inference. Here, we investigated to what extent we can obtain an accurate joint posterior from two datasets if the inference is done sequentially rather than jointly, under the condition that each inference step is done using Monte Carlo sampling. To test this, we evaluated the accuracy of kernel density estimates, Gaussian mixtures, mixtures of factor analyzers, vine copulas and Gaussian processes in approximating posterior distributions, and then tested whether these approximations can be used in sequential inference. In low dimensionality, Gaussian processes are more accurate, whereas in higher dimensionality Gaussian mixtures, mixtures of factor analyzers or vine copulas perform better. In our test cases of sequential inference, using posterior approximations gives more accurate results than direct sample reweighting, but joint inference is still preferable over sequential inference whenever possible. Since the performance is case-specific, we provide an R package mvdens with a unified interface for the density approximation methods.