1/f noise in solid-state nanopores is governed by access and surface regions

More Info
expand_more

Abstract

The performance of solid-state nanopores as promising biosensors is severely hampered by low-frequency 1/f noise in the through-pore ionic current recordings. Here, we develop a model for the 1/f noise in such nanopores, that, unlike previous reports, accounts for contributions from both the pore-cylinder, pore-surface, and access regions. To test our model, we present measurements of the open-pore current noise through solid-state nanopores of different diameters (1-50 nm). To describe the observed trends, it appears essential to include the access resistance in the modeling of the 1/f noise. We attribute a different Hooge constant for the charge carrier fluctuations occurring in the bulk electrolyte and at the pore surface. The model reported here can be used to accurately analyze different contributions to the nanopore low-frequency noise, rendering it a powerful tool for characterizing and comparing different membrane materials in terms of their 1/f noise properties.

Files

Manuscript_1f_noise.pdf
(pdf | 0.948 Mb)
- Embargo expired in 16-07-2020
Unknown license
Fragasso_2019_Nanotechnology_3... (pdf)
(pdf | 0.991 Mb)
Unknown license

Download not available

Fragasso_2019_Nanotechnology_3... (pdf)
(pdf | 0.991 Mb)
Unknown license

Download not available