The Design of the Dummy Arm
A Verification Tool for Arm Exoskeleton Development
More Info
expand_more
Abstract
Motorised arm supports for individuals with severe arm muscle weakness require precise compensation for arm weight and elevated passive joint impedance (e.g., joint stiffness as a result of muscle atrophy and fibrosis). Estimating these parameters in vivo, along with the arm’s centre of mass, is challenging, and human evaluations of assistance can be subjective. To address this, a dummy arm was designed to replicate the human arm’s anthropometrics, degrees of freedom, adjustable segment masses, and passive elbow joint impedance (eJimp). This study presents the design, anthropometrics, and verification of the dummy arm. It successfully mimics the human arm’s range of motion, mass, and centre of mass. The dummy arm also demonstrates the ability to replicate various eJimp torque-angle profiles. Additionally, it allows for the tuning of the segment masses, centres of mass, and eJimp to match a representative desired target population. This simple, cost-effective tool has proven valuable for the development and verification of the Duchenne ARm ORthosis (DAROR), a motorised arm support, or ‘exoskeleton’. This study includes recommendations for practical applications and provides insights into optimising design specifications based on the final design. It supplements the CAD design, enhancing the dummy arm’s application for future arm-assistive devices.