Quantifying universities’ direct and indirect carbon emissions – the case of Delft University of Technology

More Info
expand_more

Abstract

Purpose: The purpose of this paper is to present a comprehensive analysis of the carbon footprint of the Delft University of Technology (TU Delft), including direct and indirect emissions from utilities, logistics and purchases, as well as a discussion about the commonly used method. Emissions are presented in three scopes (scope 1 reports direct process emissions, scope 2 reports emissions from purchased energy and scope 3 reports indirect emissions from the value chain) to identify carbon emission hotspots within the university’s operations. Design/methodology/approach: The carbon footprint was calculated using physical and monetary activity data, applying a process and economic input-output analysis. Findings: TU Delft’s total carbon footprint in 2018 is calculated at 106 ktCO2eq. About 80% are indirect (scope 3) emissions, which is in line with other studies. Emissions from Real estate and construction, Natural gas, Equipment, ICT and Facility services accounted for about 64% of the total footprint, whereas Electricity, Water and waste-related carbon emissions were negligible. These findings highlight the need to reduce universities’ supply chain emissions. Originality/value: A better understanding of carbon footprint hotspots can facilitate strategies to reduce emissions and finally achieve carbon neutrality. In contrast to other work, it is argued that using economic input-output models to calculate universities’ carbon footprints is a questionable practice, as they can provide only an initial estimation. Therefore, the development of better-suited methods is called for.