High-precision 3D geolocation of persistent scatterers with one single-Epoch GCP and LIDAR DSM data
More Info
expand_more
Abstract
In persistent scatterer (PS) interferometry, the relatively poor 3D geolocalization precision of the measurement points (the scatterers) is still a major concern. It makes it difficult to attribute the deformation measurements unambiguously to (elements of) physical objects. Ground control points (GCP's), such as corner reflectors or transponders, can be used to improve geolocalization, but only in the range-azimuth domain. Here, we present a method which uses only one GCP, visible in only one single radar acquisition, in combination with a digital surface model (DSM) data to improve the geolocation precision, and to achieve an object snap by projecting the scatterer position to the intersection with the DSM model, in the metric defined by the covariance matrix (i.e. error ellipsoid) of every scatterer.