Cryogenic Integration for Quantum Computer Using Diamond Color Center Spin Qubits

More Info
expand_more

Abstract

For quantum computing modules using diamond color centers, we propose an integrated structure of a quantum chip with photonic circuits and an interposer with electric circuits. The chip and interposer are connected via gold stud bumps using flip-chip bonding technology. For evaluating the proposed integrated structure, we bonded a test chip of 15 × 15 mm2, corresponding to the area that allows the allocation of color center qubits in the order of 102, with an interposer of 20 × 20 mm2, including test measurement lines. We confirm all connections of 16 lines with two bumps for each line at 10 K. The resistance of the lines with two bumps at 10 K is ~ 3.5O, These resistances are mainly attributed to the gold lines on the interposer, which is confirmed by simulations. The shear strength of the flip-chip bonded structure is 67 g/bump. It is larger than that of previous reports where the chips passed the standard temperature cycle test. Moreover, we integrate the flip-chip bonded structure with a printed circuit board (PCB). We confirm a connection between the connector terminal of the PCB and the test chip at 80 K. It is shown that the integrated structure using gold stud bumps has a potentially highly reliable connection at cryogenic temperature. These results will lead to realizing large-scale diamond spin quantum processors.

Files

Cryogenic_Integration_for_Quan... (pdf)
(pdf | 0.564 Mb)
- Embargo expired in 30-11-2023
Unknown license