Insight into Eu redox and Pr3+ 5d emission in KSrPO4 by VRBE scheme construction

More Info
expand_more

Abstract

A series of Ln-doped KSrPO4 (Ln = Ce3+, Eu3+, Eu2+, Pr3+) phosphors are prepared through a high-temperature solid-state method. The KSrPO4 compound is confirmed to possess a β-K2SO4 structure with the Pnma group by Rietveld refinement, and the temperature-dependent lattice parameters are investigated with the powder X-ray diffraction results at different temperatures. Ce3+ and Eu3+ ions are introduced to probe the crystal field strength (CFS) and the lanthanide site symmetry by using VUV-UV-vis spectroscopy. The temperature-dependent luminescence properties of KSrPO4: Ce3+/Eu2+ exhibit an excellent thermal stability of Ce3+/Eu2+ luminescence. Based on the VUV-UV-vis spectra of Ce3+ and Eu3+ doped KSrPO4, the vacuum referred binding energy (VRBE) scheme is constructed to understand the redox properties of Eu, the 5d energy levels of Pr3+ and the thermal quenching characteristics of Ce3+ and Eu2+ luminescence.

Files

1.5005899.pdf
(pdf | 1.36 Mb)
- Embargo expired in 02-01-2019
Unknown license