Interpolation and Embeddings of Weighted Tent Spaces

More Info
expand_more

Abstract

Given a metric measure space X, we consider a scale of function spaces (Formula presented.), called the weighted tent space scale. This is an extension of the tent space scale of Coifman, Meyer, and Stein. Under various geometric assumptions on X we identify some associated interpolation spaces, in particular certain real interpolation spaces. These are identified with a new scale of function spaces, which we call Z-spaces, that have recently appeared in the work of Barton and Mayboroda on elliptic boundary value problems with boundary data in Besov spaces. We also prove Hardy–Littlewood–Sobolev-type embeddings between weighted tent spaces.