Quasinormal mode solvers for resonators with dispersive materials

More Info
expand_more

Abstract

Optical resonators are widely used in modern photonics. Their spectral response and temporal dynamics are fundamentally driven by their natural resonances, the so-called quasinormal modes (QNMs), with complex frequencies. For optical resonators made of dispersive materials, the QNM computation requires solving a nonlinear eigenvalue problem. This raises a difficulty that is only scarcely documented in the literature. We review our recent efforts for implementing efficient and accurate QNM solvers for computing and normalizing the QNMs of micro- and nanoresonators made of highly dispersive materials. We benchmark several methods for three geometries, a two-dimensional plasmonic crystal, a two-dimensional metal grating, and a three-dimensional nanopatch antenna on a metal substrate, with the perspective to elaborate standards for the computation of resonance modes.

Files

Josaa_36_4_686.pdf
(pdf | 7.69 Mb)
Unknown license

Download not available