Sequential Neural Network Model with Spatial-Temporal Attention Mechanism for Robust Lane Detection Using Multi Continuous Image Frames

More Info
expand_more

Abstract

Lane detection serves as a fundamental task for automated vehicles and Advanced Driver Assistance Systems. However, current lane detection methods can not deliver the versatility of accurate, robust, and realtime compatible lane detection in real-world scenarios especially under challenging driving scenes. Available vision-based methods in the literature do not consider critical regions of the image and their spatial-temporal salience regarding the detection results, thus they deliver poor performance in peculiar difficult circumstances (e.g., serious occlusion, dazzle lighting). This study aims to introduce a novel sequential neural network model with a spatial-temporal attention mechanism that can focus on key features of lane lines and exploit salient spatial-temporal correlations among continuous image frames for the purpose of enhancing the accuracy and robustness of lane detection. Under the regular encoder-decoder structure and with the implementation using common neural network backbones, the proposed model is trained and evaluated on three large-scale opensource datasets. Extensive experiments demonstrate the strength and the robustness of the proposed model outperforming available state-of-the-art methods in various testing.

Files

TRBAM_23_04409_Poster.pdf
(pdf | 2.59 Mb)
Unknown license